Formation of a lava dome at Sabancaya volcano during the year 2019: evidences from multiparametric monitoring
DOI:
https://doi.org/10.47347/incasciences.v1i1.29Keywords:
Sabancaya Volcano, Lava Dome, Multiparametric Monitoring, Thermal AnomaliesAbstract
The Sabancaya Volcano (southern Peru), began a new eruptive sequence in November 2016, after 18 years of dormancy. Its eruptive activity is characterized by constant, moderate, Vulcanian explosive activity (VEI = 1-2). One of the most noteworthy characteristics of this process is the growth of a lava dome in the crater, which was detected by multiparametric volcanic monitoring. The process started on March 5 with detection of deformation probably due to over-pressurization of a shallow source suggesting degassing and
magma migration. Degassing is recorded since March 27 with an increase in the flow of SO2. Additionally, an increase in pressure due to degassing and magma migration are suggested during this stage by high energy (105 MJ) LPs. Consequently, on April 27 the height of volcanic plumes increases from 1500 to 3000 meters above the crater. This is followed by the rupture of internal structures due to magma migration, triggering swarms of VT and VTD earthquakes with very high seismic energies (up to 294 MJ
in one day). The migration of fluids through these fractures resulted in an increase in energy in LP earthquakes. Subsequently, we propose that the extrusion of the lava dome started on September 6 as suggested by more energetic LP earthquakes caused by the degassing of ascending magma and the occurrence of a new swarm of shallow VT seismicity triggered as the magma pushed
its way to the surface. Finally, between November 26 and December 3 a last pulse of magma contributed with the growth of the dome. The seismic characteristics change completely with the daily number of explosions and LPs decreasing and a dramatic increase in TRE and HIB earthquakes, which suggests the existence of a permeable dome. Since there is no surface deformation or seismic events associated with the movement of large volumes of fluids, we propose that it is the end of this process.
References
Boixart, G., Cruz, L., Miranda, R., Euillades, P., Euillades, L. & Battaglia, M. (2020). Source Model for Sabancaya Volcano Constrained by DInSAR and GNSS Surface Deformation Observation. Remote Sensing, 12(11), 1852. https://doi. org/10.3390/rs12111852
Cruz, L. (2019). Análisis de deformación del volcán Sabancaya como herramienta útil en el pronóstico de erupciones periodo 2012 – 2017. Tesis de Ingeniero, Universidad Nacional de San Agustín de Arequipa, 137 p. http://repositorio.unsa.edu. pe/handle/UNSA/10016
Delgado, R. (2012). Estudio geológico, petrográfico y geoquímico del complejo volcánico Ampato-Sabancaya (provincia Caylloma, departamento Arequipa). Tesis Ingeniero Geólogo, Universidad Nacional de San Agustín de Arequipa, 169 p.
Hale, A.J. (2008). Lava dome growth and evolution with an independently deformable talus. Geophysical Journal International, 174(1), 391-417. https://doi.org/10.1111/j.1365- 246X.2008.03806.x
Heap, M.J., Russell, J.K. & Kennedy, L.A. (2016). Mechanical behaviour of dacite from Mount St. Helens (USA): A link between porosity and lava dome extrusion mechanism (dome or spine)?. Journal of Volcanology and GeothermalResearch, 328, 159–177. https://doi.org/10.1016/j. jvolgeores.2016.10.015
Herring, T.A., King R.W. & McClusky, S.C. (2010). GPS Analysis at MIT, GAMIT Reference Manual, Release 10.4. Cambridge MA: Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 170 p.
Herring, T.A., Floyd, M.A., King, R.W. & McClusky, S.C. (2015). Global Kalman filter VLBI and GPS analysis program, GLOBK Reference Manual, Release 10.6. Cambridge MA: Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 91 p.
Manrique, N., Lazarte, I., Cueva, K., Rivera, M. & Aguilar, R. (2018). Actividad del volcán Sabancaya (Perú) 2016-2017: Características de las emisiones de ceniza y análisis granulométrico. En: Aguilar, R., ed. Foro Internacional Los Volcanes y su Impacto, 8,Arequipa, 2018. Libro de resúmenes. Arequipa: Instituto Geológico Minero y Metalúrgico, p. 76-80. https://hdl.handle.net/20.500.12544/1469
Massimetti, F., Coppola, D., Laiolo, M.; Valade, S., Cigolini, C. & Ripepe, M. (2020). Volcanic Hot-Spot Detection Using SENTINEL-2: A Comparison with MODIS–MIROVA Thermal Data Series. Remote Sensing, 12(5), 820. https://doi. org/10.3390/rs12050820
McCausland, W., White, R., Indrastuti, N.; Gunawan, H.; Patria, C.; Suparman, Y.; Putra, A.; Triastuty, H. & Hendrasto,
M. (2017). Using a process-based model of pre-eruptive seismic patterns to forecast evolving eruptive styles at Sinabung Volcano, Indonesia. Journal of Volcanology and Geothermal Research, 382, 253–266. https://doi. org/10.1016/j.jvolgeores.2017.04.004
McNutt, S,R. & Roman, D. (2015). Volcanic Seismicity. En: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H. & Stix, J., eds. The Encyclopedia of Volcanoes. 2a. ed. Elsevier, p. 1011-1034.
Minakami, T. (1974). Seismology of volcanoes in Japan. En: Civetta, L., Gasparini P., Luongo, G. & Rapolla, A., eds. Physical Volcanology. Elsevier, p. 1-27.
Mousallam, Y.; Peters, N.; Masias, P.; Apaza, F.; Barnie, T.; Schipper, C.; Curtis, A.; Tamburello, G.; Aiuppa, A.; Bani P.; Giudice, G.; Pieri, D.; Davies, A.G. & Oppenheimer, C. (2017). Magmatic gas percolation through the old lava dome of El Misti volcano. Bulletin of Volcanology, 79(6), 46. https:// doi.org/10.1007/s00445-017-1129-5
Newhall, C.G. & Self, S. (1982). The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research: Oceans, 87(C2), 1231-1238. https://doi.org/10.1029/JC087iC02p01231
Pritchard, M.E. & Simons, M. (2002). A satellite geodetic survey of large-scale deformation of volcanic centres in the central Andes. Nature, 418, 167–171. https://doi.org/10.1038/ nature00872
Pritchard, M.E. & Simons, M. (2004). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2), Q02002. https://doi. org/10.1029/2003GC000610
Rivera, M.; Mariño, J.; Samaniego, P.; Delgado, R. & Manrique, N. (2015). Geología y evaluación de peligros del complejo volcánico Ampato - Sabancaya (Arequipa). INGEMMET. Boletín, Serie C: Geodinámica e Ingeniería Geológica, 61, 122 p., 2 mapas. https://hdl.handle.net/20.500.12544/297
Samaniego, P.; Rivera, M.; Mariño, J.; Guillou, H.; Liorzou, C.; Zerathe, S.; Delgado, R. & Valderrama, P. (2016). The erupve chronology of the Ampato-Sabancaya volcanic complex (Southern Peru). Journal of Volcanology and Geothermal
Research, 323, 110-128. https://doi.org/10.1016/j. jvolgeores.2016.04.038
Sparks, R.S.J. (1997). Causes and consequences of pressurisation in lava dome eruptions. Earth and Planetary Science Letters, 150(3-4), 177-189. https://doi.org/10.1016/ S0012- 821X(97)00109-X
Wallace P.J. (2001). Volcanic SO2 emissions and the abundance and distribution of exsolved gas in magma bodies. Journal of Volcanology and Geothermal Research, 108(1-4), 85-106. https://doi.org/10.1016/S0377-0273(00)00279-1
Zobin, V.M. (2012). Introduction to Volcanic Seismology. 2a ed. Elsevier, vol. 6, 482 p. https://doi.org/10.1016/C2011- 0-06141-0
Zorn, E.U., Walter, T.R., Johnson, J.B. & Mania, R. (2020). UAS- based tracking of the Santiaguito Lava Dome, Guatemala. Scientific Report, 10, 8644. https://doi.org/10.1038/s41598-020- 65386-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 administrador administrador
This work is licensed under a Creative Commons Attribution 4.0 International License.