Deformation and Volcano-Tectonic Seismicity Associated with Magma Accumulation to the North of Sabancaya Volcano in Southern Peru

Authors

  • Luis. F. Cruz Instituto Geológico Minero y Metalúrgico – INGEMMET. Dirección de Geología Ambiental y Riesgo Geológico - DGAR. Universidad Nacional de San Agustín de Arequipa – UNSA. Escuela Profesional de Ingeniería Geofísica https://orcid.org/0000-0003-4176-7497
  • Rosa. M. Anccasi Instituto Geológico Minero y Metalúrgico – INGEMMET. Dirección de Geología Ambiental y Riesgo Geológico - DGAR https://orcid.org/0000-0002-9852-0439
  • Mayra. A. Ortega Instituto Geológico Minero y Metalúrgico – INGEMMET. Dirección de Geología Ambiental y Riesgo Geológico - DGAR https://orcid.org/0000-0003-0304-7210
  • Edgard Gonzales Universidad Nacional de San Agustín de Arequipa – UNSA. Escuela Profesional de Ingeniería Geofísica https://orcid.org/0000-0002-9235-9138

DOI:

https://doi.org/10.47347/incasciences.v1i1.25

Keywords:

Sabancaya volcano, deformation, volcano-tectonic seismicity, b-parameter

Abstract

Sabancaya volcano, the youngest volcano in the Ampato-Sabancaya Volcanic Complex, is bordered to the north by the Hualca Hualca Volcano and to the south by the Ampato Volcano. Its constant eruption, over four years, represents a very important magmatic contribution that induces surface deformation. This deformation, measured between 2014 and 2020 with data from the Global
Positioning System (GPS) and Synthetic Aperture Radar (SAR) from ascending orbit, shows an inflation area of 3 - 4.5 cm/year; the unique modeling of both data sets allows us to infer that the location of the pressure source that generates the surface deformation is approximately 12.6 km deep below the Hualca Hualca Volcano. The pressure produced by this source has produced significant volcano-tectonic seismicity (VT) throughout the period analyzed. The hypocentral analysis of this type of seismicity suggests that
the fragile-ductile transition zone in the crust is located above 7 km below sea level, validating the depth of the pressure source associated with the offset magmatic reservoir involved in the eruption of the Sabancaya Volcano. The analysis of the results of the modeling of the deformation data and the recorded VT seismicity, in relation to the b-parameter heterogeneity areas identified
by Ortega et al. (2016), has allowed to illustrate a scheme based on the geological model of White & McCausland (2019). This diagram illustrates the magma chamber involved in the eruption of the Sabancaya Volcano, the fragile-ductile transition zone in the crust and the possible structures that allow the magma to rise to the surface, feeding the current and constant eruption of the
Sabancaya Volcano.

References

Altamimi, Z., Métivier, L. & Collilieux, X. (2012). ITRF2008 plate motion model. Journal of Geophysical Research: Solid Earth, 117(B7), B07402. https://doi.org/10.1029/2011JB008930

Antayhua, Y., Masías, P. & Ramos, D. (2013). Monitoreo de los volcanes Ticsani, Sabancaya y Huaynaputin:, periodo2006 – 2012. INGEMMET, Boletin Serie C: Geodinámica e Ingeniería Geológica, 53, 118 p. https://hdl.handle. net/20.500.12544/295

Battaglia, M., Cervelli, P. & Murray, J. R. (2013). dMODELS: A MATLAB software package for modeling crustal deformation near active faults and volcanic centers. Journal of Volcanology and Geothermal Research, 254, 1-4. https:// doi.org/10.1016/j.jvolgeores.2012.12.018

Benavente, C., Delgado, G., García, B., Aguirre, E. & Audin,

L. (2017). Neotectónica, evolución del relieve y peligro sísmico en la región Arequipa. INGEMMET, Boletín Serie C: Geodinámica e Ingeniería Geológica, 64, 370 p., 1mapa. https://hdl.handle.net/20.500.12544/1223

Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline ditierential SAR interferograms. EEE Transactions on Geoscience and Remote Sensing, 40(11), 2375–2383. https://doi.org/10.1109/TGRS.2002.803792

Boixart, G., Cruz, L. F., Miranda Cruz, R., Euillades, P. A., Euillades, L. D. & Battaglia, M. (2020). Source Model for Sabancaya Volcano Constrained by DInSAR and GNSS Surface Deformation Observation. Remote Sensing, 12(11), 1852. https://doi.org/10.3390/rs12111852

Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. (2017). Vertically extensive and unstable magmatic systems: A unified view of igneous processes. Science, 355(6331). https://doi. org/10.1126/science.aag3055

Chouet, B., Dawson, P. & Arciniega-Ceballos, A. (2005). Source mechanism of Vulcanian degassing at Popocatepetl Volcano, Mexico, determined from moment–tensor inversion of very-long-period signals. Journal of Geophysical Research: Solid Earth, 110(B7), B07301. https://doi. org/10.1029/2004JB003524

Cruz, L. F. (2019). Análisis de deformación del volcán Sabancaya como herramienta útil en el pronóstico de erupciones periodo 2012-2017. Tesis Título Profesional, Universidad Nacional de San Agustín de Arequipa. http://repositorio.unsa.edu.pe/ handle/UNSA/10016

Delgado, F., Pritchard, M. E., Ebmeier, S., González, P. & Lara, L. (2017). Recent unrest (2002–2015) imaged by space geodesy at the highest risk Chilean volcanoes: Villarrica, Llaima, and Calbuco (Southern Andes). Journal of Volcanology and Geothermal Research, 344, 270- 288. https://doi.org/10.1016/j.jvolgeores.2017.05.020

Ebmeier, S.K., Andrews, B.J., Araya, M.C., Arnold, D. W. D, Biggs, J., Cooper, C., Cottrell, E., Furtney, M., Hickey, J., Jay, J., Lloyd, R., Parker, A. L., Pritchard, M. E., Robertson,

E., Venzke, E. & Williamson, J. L. (2018). Synthesis of global satellite observations of magmatic and volcanic deformation: implications for volcano monitoring & the lateral extent of magmatic domains. Journal of Applied Volcanology, 7, 2 (2018). https://doi.org/10.1186/s13617-018-0071-3

Geiger, L. (1912). Probability method for the determination of earthquake epicenters from the arrival time only (translated from Geiger’s 1910 German article). Bulletin Saint Louis University, 8(1), 56- 71.

Goldstein, P & Snoke, A. (2005). SAC Availability for the IRIS Community. Incorporated Research Institutions for Seismology, Data Services Newsletter, 7(1), UCRL- JRNL-211140. https://ds.iris.edu/ds/newsletter/vol7/no1/

Herring, T., King, R. W. & McCluskey, S. (2010). M. Introduction to GAMIT/GLOBK Release 10.4. Massachusetts Institute of Technology Technical Report, Cambridge.

Instituto Geológico, Minero y Metalúrgico (2019). Informe técnico anual: vigilancia del volcán Sabancaya, periodo 2019. Región Arequipa, provincia Cailloma (Informe Técnico N° A6998). Arequipa: Observatorio Vulcanológico del INGEMMET, 99 p. https://hdl.handle.net/20.500.12544/2578

Ishimoto, M. & Iida, K. (1939). Observations of earthquakes registered with the microseismograph constructed recently. Bulletin of the Earthquake Research Institute, 17, 443-478.

Ito, K. (1993). Cutoff depth of seismicity and large earthquakes near active volcanoes in Japan. Tectonophysics, 217(1-2), 11-21. https://doi.org/10.1016/0040-1951(93)90198-S

Kissling, E., Kradolfer, U. & Maurer, H. (1995). VELEST user’s guide-short introduction. Institute of Geophysics and Swiss Seismological Service, ETH Zürich, 25 p.

Lahr, J. C. (1999). Quick-start manual for running HYPOELLIPSE on a PC with Win XP O/S. En: Lahr, J. C. HYPOELLIPSE: a computer program for determining local earthquake hypocentral parameters, magnitude, and first-motion pattern:

U.S. Geological Survey, Open-File Report 99–23, version 1.1, 8 p. https://pubs.usgs.gov/of/1999/ofr-99-0023/

MacQueen, P., Delgado, F., Reath, K., Pritchard, M. E., Bagnardi, M., Milillo, P., Lundgren, P., Macedo, O., Aguilar, V., Ortega, M., Anccasi, R., Lazarte, I. & Miranda, R. (2020). Volcano- tectonic interactions at Sabancaya volcano, Peru: eruptions, magmatic inflation, moderate earthquakes, and fault creep. Journal of Geophysical Research: Solid

Earth, 125(5), e2019JB019281. https://doi.org/10.1029/2019JB019281

McTigue, D. F. (1987). Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox. Journal of Geophysical Research: SolidEarth, 92(B12), 12931-12940. https://doi.org/10.1029/ JB092iB12p12931

Ortega, M, Antayhua, Y. & Taipe, E. (2016). Caracterización del parámetro “b” del complejo volcánico Ampato – Sabancaya

– Hualca Hualca (periodo 2015). En: Congreso Peruano de Geología, 18, Lima, 16-19 octubre 2016. Resúmenes. Lima: Sociedad Geológica del Perú, 4 p.

Pritchard, M. E. & Simons, M. (2004). An InSAR-based survey of volcanic deformation in the central Andes. Geochemistry, Geophysics, Geosystems, 5(2), Q02002. https://doi. org/10.1029/2003GC000610

Ramos, D., Masías, P., Apaza, F., Lazarte, I., Taipe, E., Miranda, R., Ortega, M., Anccasi, R., Ccallata, B., Calderón, J. & Rivera, M. (2016). Los inicios de la actividad eruptiva 2016 del volcán Sabancaya. Región Arequipa (Informe Técnico Nº A6735). Lima: Instituto Geológico, Minero y Metalúrgico, 30 p. https://hdl.handle.net/20.500.12544/994

Samaniego, P., Rivera, M., Mariño, J., Guillou, H., Liorzou, C., Zerathe, S., Delgado, R., Valderrama, P. & Scao, V. (2016). The eruptive chronology of the Ampato–Sabancaya volcanic complex (Southern Peru). Journal of Volcanology and Geothermal Research, 323, 110-128. https://doi. org/10.1016/j.jvolgeores.2016.04.038

Taipe, E.; Miranda, R. & Diaz, J., 2016. Análisis de deformación del volcán Sabancaya con datos GPS, periodo 2015. En: Congreso Peruano de Geología, 18, Lima, 16-19 Octubre 2016. Resúmenes. Lima: Sociedad Geológica del Perú, 5 p.

White, R. A. & McCausland, W. A. (2019). A process-based model of pre–eruption seismicity patterns and its use for eruption forecasting at dormant stratovolcanoes. Journal of Volcanology and Geothermal Research, 382, 267 – 297. https://doi.org/10.1016/j.jvolgeores.2019.

Published

2023-02-02

How to Cite

Cruz, L. F., Anccasi, R. M., Ortega, M. A., & Gonzales, E. (2023). Deformation and Volcano-Tectonic Seismicity Associated with Magma Accumulation to the North of Sabancaya Volcano in Southern Peru. Incasciences, 1(1), 1–15. https://doi.org/10.47347/incasciences.v1i1.25

Issue

Section

Artículos originales